Authors: Pamela H. Loring, James D. McLaren, Holly F. Goyert, and Peter W. C. Paton
Year: 2020
Publication: The Condor
Publication Link: https://academic.oup.com/condor/article/122/3/duaa028/5860737
Keywords: automated radio telemetry, Charadrius melodus melodus, migration, offshore wind energy, Piping Plover
Abstract: In advance of large-scale development of offshore wind energy facilities throughout the U.S. Atlantic Outer Continental Shelf (OCS), information on the migratory ecology and routes of federally threatened Atlantic Coast Piping Plovers (Charadrius melodus melodus) is needed to conduct risk assessments pursuant to the Endangered Species Act. We tagged adult Piping Plovers (n = 150) with digitally coded VHF transmitters at 2 breeding areas within the southern New England region of the U.S. Atlantic coast from 2015 to 2017. We tracked their migratory departure flights using a regional automated telemetry network (n = 30 stations) extending across a portion of the U.S. Atlantic Bight region, a section of the U.S. Atlantic coast, and adjacent waters of the Atlantic Ocean extending from Cape Cod, Massachusetts, to Cape Hatteras, North Carolina. Most adults departed within a 10-day window from July 19 to July 29, migrated nocturnally, and over 75% of individuals departed within 3 hr of local sunset on evenings with supportive winds. Piping Plovers migrated offshore directly across the mid-Atlantic Bight, from breeding areas in southern New England to stopover sites spanning
from New York to North Carolina, USA, over 800 km away. During offshore migratory flights, Piping Plovers flew at estimated mean speeds of 42 km hr−1 and altitudes of 288 m (range of model uncertainty: 36–1,031 m). This study provides new information on the timing, weather conditions, routes, and altitudes of Piping Plovers during fall migration. This information can be used in estimations of collision risk that could potentially result from the construction of offshore wind turbines under consideration across large areas of the U.S. Atlantic OCS.